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Abstract
The comparative study of the computational pow-

ers of deterministic and nondeterministic computa-
tions is one of the central tasks of complexity the-
ory. This paper investigates the computational power
of nondeterministic computing devices with restricted
nondeterminism. There are only few results measuring
the computational power of restricted nondetermin-
ism. In general, there are three possibilities to measure
the amount of nondeterminism in computation. In this
paper, we consider the possibility to count the num-
ber of different nondeterministic computation paths on
any input. In particular, we deal with five-way three-
dimensional finite automata with multiple input heads
operating on three-dimensional input tapes.

Key Words : computational complexity, finite au-
tomaton, multihead, path-bounded, three-dimension.

1 Introduction

The question of whether processing three-
dimensional digital patterns is much difficult than
two-dimensional ones is of great interest from the
theoretical and practical standpoints. In recent
years, due to the advances in many application areas
such as computer graphics, computer-aided design /
manufacturing, computer vision, image processing,
robotics, and so on, the study of three-dimensional
pattern processing has been of crucial importance.
Thus, the study of three-dimensional automata as the
computational model of three-dimensional pattern
processing has been meaningful. For example, in [8,9],
a three-dimensional finite automaton was proposed
as a natural extension of the two-dimensional finite
automaton to three dimensions. On the other hand,
the comparative study of the computational powers
of deterministic computations is one of the central
tasks of complexity theory.

In this paper, we investigate the computational
power of nondeterministic computing devices with re-
stricted nondeterminism. However, there are only few
results [1-4] measuring the computational power of re-
stricted nondeterminism. In general, there are three
possibilities to measure the amount of nondeterminism
in computation. One possibility is to count the num-
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Fig. 1: Three-dimensional multihead finite automaton.

ber of advice bits (nondeterministic guesses) in par-
ticular nondeterministic computations, and the sec-
ond possibility is to count the number of accepting
computation paths. The third possibility is to count
the number of different nondeterministic computation
paths on any input. This paper considers the third
one. In particular, the paper investigates a hierarchy
on the degree of nondeterminism of five-way three-
dimensional (simple) multi-head finite automata as
a natural extension of the three-way two-dimensional
(simple) multi-head finite automata [5]. Furthermore,
we investigate a relationship between the accepting
powers of nondeterminism and self-verifying nondeter-
minism for five-way three-dimensional (simple) multi-
head finite automata with the number of computation
paths restricted (see Fig.1).

2 Preliminaries

Let
∑

be a finite set of symbols. A three-
dimensional tape over

∑
is a three-dimensional rect-

angular array of elements of
∑

. The set of all three-
dimensional tapes over

∑
is denoted by

∑
(3). Given

a tape x ∈
∑

(3), for each integer j (1≤ j ≤3), we
let lj(x) be the length of x along the jth axis. The
set of all x ∈

∑
(3) with l1(x) = n1, l2(x) = n2,

and l3(x) = n3 is denoted by
∑

(n1,n2,n3). When 1≤
ij≤lj(x) for each j(1≤ j ≤3), let x(i1, i2, i3) denote
the symbol in x with coordinates (i1, i2, i3). Further-
more, we define

x[(i1, i2, i3), (i′1, i
′
2, i

′
3)],
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when 1≤ij≤i′j≤lj(x) for each integer j(1≤ j ≤3), as
the three-dimensional input tape y satisfying the fol-
lowing conditions :

(i)for each j(1≤ j ≤3), lj(y)=i′j-ij+1;
(ii)for each r1, r2, r3(i≤r1≤l1(y), i≤r2≤l2(y),

i≤r3≤l3(y)), y(r1, r2, r3)=x(r1+i1-1, r2+i2-1, r3+i3-
1). (We call x[(i1, i2, i3), (i′1, i

′
2, i

′
3)] the [(i1, i2, i3),

(i′1, i
′
2, i

′
3)]-segment of x.)

For each x∈
∑

(n1,n2,n3) and for each 1≤i1≤n1,
1≤i2≤n2, 1≤i3≤n3, x[(i1, 1, 1), (i1, n2, n3), x[(1, i2, 1),
(n1, i2, n3)], x[(1, 1, i3), (n1, n2, i3)], x[(i1, 1, i3),
(i1, n2, i3)], and x[(1, i2, i3), (n1, i2, i3)] are called the
i1th (2-3) plane of x, the i2th (1-3) plane of x, the i3th
(1-2) plane of x, the i1th now on the i3th (1-2) plane
of x, and the i2th column on the i3th (1-2) plane of x,
and are denoted by x(2-3)i1 , x(1-3)i2 , x(1-2)i3 , x[i1,
∗, i3], and x[∗, i2, i3], respectively.

A five-way three-dimensional multihead finite au-
tomaton (FV3-MHFA) [5] is a finite automaton with
multiple input heads operating on three-dimensional
input tapes surrounded by boundary symbols #’s.
These heads can move east, west, south, north, or
down but not up. A five-way three-dimensional simple
multihead finite automaton (FV3-SMHFA) is an FV3-
MHFA which has only one reading head and other
counting heads which can only detect whether they
are on the boundary symbols or a symbol in the input
alphabet.

When a three-dimensional input tape x is presented
to a three-dimensional device M , M starts in its ini-
tial state with all its heads on x(1, 1, 1). M accepts
the input tape x if and only if it eventually halts in
an accepting state with all its heads on the bottom
boundary symbols #’s.

For a device M , we denote by T (M) the set of
all inputs accepted by M . The states of this device
are considered to be divided into three disjoint sets of
working, accepting, and rejecting states.

A self-verifying nondeterministic device is a device
with four types of states : working, accepting, reject-
ing, and neutral ones. The self-verifying nondetermin-
istic device M is not allowed to make mistakes. If
there is a computation of M on an input x finishing in
an accepting (resp., rejecting) state, then x must be
in T (M) (resp., x must not be in T (M)). For every
input y, there is at least one computation of M that
finishes either in an accepting state (if y ∈ T (M)) or
in a rejecting state (if y /∈ T (M)).

For each k≥1, let FV3-kHFA denote a five-way
three-dimensional k-head finite automaton. In order
to represent different kinds of FV3-kHFA’s, we use the
notation FV3-XYkHFA, where

(1)
{

X = N : nondeterministic,
X = SV N : self−verifying nondeterministic ;

(2)
{

Y = SP : simple,
there is no Y : non−simple.

We denote by L[FV3-XYkHFA] the class of sets of
input tapes accepted by FV3-XYkHFA’s.

Let r be a positive integer. A device M described
above is r path-bounded if for any input x, there are at
most r computation paths of M on x. We denote an
r path-bounded FV3-XYkHFA by FV3-XYkHFA(r),
and denote the class of sets of input tapes accepted by
FV3-XYkHFA(r)’s by L[FV3-XYkHFA(r)].

3 Non-Simple Case

We first prove a strong separation between r path-
bounded and (r+1) path-bounded for five-way three-
dimensional multihead finite automata.

Theorem 3.1. For each positive integers k≥2 and
r≥1,

L[FV3-SVNkHFA(r+1)]–L[FV3-NkHFA(r)]̸=ϕ.

Proof : For each positive integers k≥2 and
r≥1, let T1(k, r)={x∈{0,1}(3) | ∃n≥2rb(k)+1
[l1(x)=l2(x)=l3(x)=n] ∧ ∃i(0≤i≤r-1) [∀j(ib(k)+1≤
j ≤(i+1)b(k)) [x[∗, ∗, j]=x[∗, ∗, 2rb(k)-j+1] ∧
∃z∈{0,1}∗ [x[∗, ∗, 2rb(k)+1]=0i1z (the string of
the symbols forms a line from the first column to
the last column in the (2rb(k)+1)th plane and from
the first row to the last row in a column one after
another)]]}, where b(k)=kC2. To prove the theorem,
it suffices to show that for each k≥2 and r≥1, (1)
T1(k, r+1)∈L[FV3-SVNkHFA(r+1)], and (2) T1(k,
r+1)/∈L[FV3-NkHFA(r)]. First of all we prove Past
(1) of the theorem. T1(k, r+1) is accepted by an
FV3-SVNkHFA(r+1) M which acts as follows. Sup-
pose that an input tape x with l1(x)=l2(x)=l3(x)=n
(n≥2(r+1)b(k)+1) is presented to M . First, M
nondeterministically guesses some i (0≤i≤r) and
checks whether x[∗, ∗, j] and x[∗, ∗, 2(r+1)b(k)-j+1]
are identical for each j (ib(k)+1≤j≤(i+1)b(k)). This
check can easily be done by using a well-known
technique in [10]. If x[∗, ∗, j] ̸=x[∗, ∗, 2(r+1)b(k)-
j+1] for some j (ib(k)+1≤j≤(i+1)b(k)) and x[∗, ∗,
2(r+1)b(k)+1]=0i1z (the string of the symbols forms
a line from the first column to the last column in
the (2(r+1)b(k)+1)th place and from the first row to
the last row in a column one after another) for some
z∈{0, 1}∗, then M enters a rejecting state. If x[∗, ∗,
2(r+1)b(k)+1]̸=0i1z (the string of the symbols forms
a line from the first column to the last column in
the (2(r+1)b(k)+1)th place and from the first row
to the last row in a column one after another) for
some z∈{0, 1}∗, M enters a neutral state, whether
or not x[∗, ∗, j]=x[∗, ∗, 2(r+1)b(k)-j+1] for each j
(ib(k)+1≤j≤(i+1)b(k)). It is obvious that M accepts
T1(k, r+1). On the other hand, by using a standard
technique in [6, 7], we can get Part (2) of the theorem.

¤
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From Theorem 3.1, we have the following corollary
:
Corollary 3.1. For each X∈{N , SV N}, and for each
positive integers k ≥2 and r ≥1,

L[FV3-XkHFA(r)]( L[FV3-XkHFA(r+1)].

We next show a strong separation between self-
verifying nondeterminism and nondeterminism.

Theorem 3.2. For each positive integer k≥2.

L[FV3-NkHFA(2)]–L[FV3-SVNkHFA] ̸=ϕ.

Proof : For each positive integer k≥2, let
T2(k)={x∈{0,1}(3) | ∃n≥4b(k) [l1(x)=l2(x)=l3(x)=n]
∧ ∃i (0≤i≤1) ∃j (ib(k)+1≤j≤(i+1)b(k)) [x[∗, ∗, j] ̸=
x[∗, ∗, 4b(k)–j+1]}, where b(k)=kC2. Then, we have
T2(k)∈L[FV3-NkHFA(2)]–L[FV3-SVNkHFA]. Then,
by using the same idea as in [6,7], we can get the de-
sired result. ¤

From Theorems 3.1 and 3.2, we have the following
corollary:

Corollary 3.2. For each positive integers k≥2 and
r≥2,

(1) L[FV3-SVNkHFA](L[FV3-NkHFA],

(2) L[FV3-SVNkHFA(r)](L[FV3-NkHFA(r)], and

(3) L[FV3-SVNkHFA(r+1)] and L[FV3-NkHFA(r)]
are incomparable.

4 Simple Case

This section first prove a strong separation between
r path-bounded and (r+1) path-bounded machines for
the five-way simple case.

Theorem 4.1. For each positive integers k≥2 and
r≥1,

L[FV3-SVNSPkHFA(r+1)]–L[FV3-NSPkHFA(r)]=ϕ.

proof : For each positive integers k≥2 and
r≥1, let T3(k, r)= {x∈{0, 1}(3) | ∃n≥max{2r+1, k}
[l1(x)=l2(x)=l3(x)=n] ∧ [ [ (the 1st plane of x has ex-
actly k ‘1’s) ∧ x[∗, ∗, 1]=x[∗, ∗, 1+r] ∧ ∃z∈{0, 1}∗
[x[∗, ∗, 2r+1]=01z (the string of the symbols forms a
line from the first column to the last column in the
(2r+1)th plane and from the first row to the last row
in a column one after another)]] ∨ [(the 2nd plane of x
has exactly k ‘1’s) ∧ x[∗, ∗, 2]=x[∗, ∗, 2+r] ∧ ∃z∈{0,
1}∗ [x[∗, ∗, 2r+1]=021z (the string of the symbols
forms a line from the first column to the last column
in the (2r+1)th plane and from the first row to the
last row in a column one after another)]] ∨· · · ∨ [(the
rth plane of x has exactly k ‘1’s) ∧ x[∗, ∗, r]=x[∗, ∗,

2r] ∧ ∃z∈{0, 1}∗ [x[∗, ∗, 2r+1]=0r1z (the string of the
symbols forms a line from the first column to the last
column in the (2r+1)th plane and from the first row
to the last row in a column one after another) ]]]}. By
using the same technique as in the proof of Theorem
4.1 in [7], we can get the desired result. ¤

From Theorem 4.1, we have the following corollary :

Corollary 4.1. For each X∈{N , SV N}, and for each
positive integers k≥2 and r≥1,

L[FV3-XSPkHFA(r)](L[FV3-XSPkHFA(r+1)].

We next show a strong separation between self-
verifying nondeterminism and nondeterminism.

Theorem 4.2. For each positive integer k≥2,
L[FV3-NSPkHFA(2)]–L[FV3-SVNSPkHFA] ̸=ϕ.

Proof : For each positive integer k≥2, let
T4(k)={x∈{0, 1}(3) | ∃n≥max{4, k} [l1(x)=
l2(x)=l3(x)=n] ∧ ∃i(1≤i≤2) [(the ith plane of x
has exactly k ‘1’s) ∧ x[∗, ∗, i] ̸=x[∗, ∗, i+2]]}. Then,
by using the standard technique in [6], we can show
that

T4(2k-1)∈L[FV3-NSPkHFA(2)]
–L[FV3-SVNSPkHFA]. ¤

From Theorems 4.1 and 4.2, we have the following
corollary :

Corollary 4.2. For each positive integers k≥2 and
r≥2,
(1) L[FV3-SVNSPkHFA](L[FV3-NSPkHFA],

(2) L[FV3-SVNSPkHFA(r)](L[FV3-NSPkHFA(r)],

and

(3) L[FV3-SVNSPkHFA(r+1)] and
L[FV3-NSPkHFA(r)] are incomparable.

5 Conclusion

In this paper, we investigated path-bounded five-
way three-dimensional finite automata, and showed
some properties about them. It is interesting to in-
vestigate a hierarchy based on the degree of nondeter-
minism for six-way three-dimensional multihead finite
automata which can move east, west, south, north, up,
or down.
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